Then $\left(\frac{\partial f(\vec{k})}{\partial t}\right)$ collisions is evaluated by taking the difference between the number of collisions into a volume element at \vec{k} and the number out of it; by considering only transitions between states of equal energy, we obtain
$\left(\frac{\partial f(\vec{k})}{\partial t}\right)_{\text {coll. }}=[1-f(\vec{k})] \int f\left(\vec{k}^{\prime}\right) P_{k^{\prime} k} d S^{\prime}-f(\vec{k}) \int\left[1-f\left(\vec{k}^{\prime}\right)\right] P_{k k^{\prime}} d S^{\prime}$.
Here $P_{k k^{\prime}} d S^{\prime}$ is the probability per unit time of an electron making a transition from a state k to a state k, both of which lie on the same spherical surface of constant energy; $\mathrm{d} \mathrm{S}^{\prime}$ is an element of area about the state k^{\prime}. The form of $P_{k k^{\prime}}$ is given in Eq. (IV-23); $U_{k k^{\prime}}$ and $U_{k^{\prime} k^{\prime}}$, the transition probabilities between volume elements in k space, are equal by detailed balancing. Since we have assumed spherical energy surfaces, $\left|\nabla_{k} E\right|$ in Eq. (IV-23) is constant on a surface of constant energy and

$$
\begin{equation*}
P_{k k^{\prime}}=P_{k^{\prime} k} \tag{IV-18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\frac{\partial f(\vec{k})}{\partial t}\right) \text { coll. }=\int\left[f\left(\overrightarrow{k^{\prime}}\right)-f(\vec{k})\right] P_{k k^{\prime}} d S^{\prime} \tag{IV-19}
\end{equation*}
$$

Fermi sphere
Substituting for $f\left(\vec{k}^{\prime}\right), f(\vec{k})$ from Eq. (IV - 13) and dividing through by
$\tau(\vec{k})\left(\frac{\partial f(\vec{k})}{\partial t}\right)_{\text {fields }}$, and using the expression for $\left(\frac{\partial f(\vec{k})}{\partial t}\right)_{\text {fields }}$ from
Eq. (IV-16) we obtain

$$
\begin{equation*}
\frac{1}{\tau(\vec{k})}=\int\left[1-\frac{\tau\left(\vec{k}^{\prime}\right) k_{z}^{\prime}}{\tau(\vec{k}) k_{z}}\right] P_{k k^{\prime}} d S^{\prime} . \tag{IV-20}
\end{equation*}
$$

Fermi sphere
Equation (IV-20) for $\tau(\vec{k})$ is an integral equation. In order to estimate the anisotropy of $\tau(\vec{k})$ we shall set $\tau\left(\overrightarrow{k^{\prime}}\right) / \tau(\vec{k})=1$ inside the integral. This may be regarded as the first step of an iteration procedure for finding τ. Since we chose our electric field (z axis) along the direction \vec{k} for which we are computing $\tau(\overrightarrow{\mathrm{k}})$ we have

$$
\begin{equation*}
k_{z}=k_{s} \text { and } \quad k_{z}^{\prime}=k_{s} \cos \theta \tag{IV-21}
\end{equation*}
$$

where θ is the angle between k and k^{\prime}. Let ϕ be the angle between the plane of k and k^{\prime} and the $z-x$ plane. Then

$$
\begin{equation*}
\frac{1}{\tau(\vec{k})}=k_{s}^{2} \quad \int_{0}^{\pi} d \phi \int_{0}^{2 \pi}[1-\cos \theta]|\sin \theta| P_{\vec{k}, \phi}(\theta) d \theta \tag{IV-22}
\end{equation*}
$$

We have chosen these limits on θ and ϕ because of the possibility that $\mathrm{P}_{\overrightarrow{\mathrm{k}}, \phi}(\theta) \neq \mathrm{P}_{\overrightarrow{\mathrm{k}}, \phi}(-\theta)$; this possibility arises because for an arbitrary direction of \vec{k} the section of the Brillouin zone for phonons centered on the tip of the k vector is not symmetrical about the line $\theta=0$. A phonon may be available for a normal process with angle θ but not for one with the angle $-\theta$. We would like to evaluate the inner integral numerically and prefer to include the effect of asymmetries in it.

We now consider the form of $\mathrm{P}_{\vec{k}, \phi}(\theta)$. Perturbation theory gives

$$
\begin{equation*}
P_{\vec{k}, \phi}(\theta)=\frac{1}{4 \pi^{2} \npreceq} \quad \frac{\left|U_{k k^{\prime}}\right|^{2}}{\nabla_{k^{E}} \mid k^{\prime}} \tag{IV-23}
\end{equation*}
$$

where $U_{k k}$ is the matrix element of the perturbing potential U taken between the initial electron state ψ_{k} and the final state $\psi_{k^{\prime}}[10]$; unit crystal volume is assumed. We shall be interested only in the perturbation due to lattice vibrations, since at room temperature these dominate the scattering of electrons. We then write

$$
\begin{align*}
U(\vec{r}) & =\sum_{\vec{l}} V[\vec{r}-\vec{l}-\vec{R}(\vec{l})]-V(\vec{r}-\vec{l}) \\
& =-\sum_{\vec{l}} \vec{R}(\vec{l}) \cdot \nabla V(\vec{r}-\vec{l}) ; \tag{IV-24}
\end{align*}
$$

where $V(\vec{r}-\vec{l})$ is the potential at \vec{r} associated with the ion at lattice point \vec{l} and $\vec{R}(\vec{l})$ is the displacement at $\vec{l} . V(\vec{r}-\vec{l})$ includes both the potential due to the ion core and to the electrons that shield the core. The wave functions are

